

Preliminary DATASHEET

DMV3N3R0V754M2DTA0

3V, 750mF, -20°C to +85°C Supercapacitor

Preliminary V1.2, Feb 2023

Note: Specification may change without notice

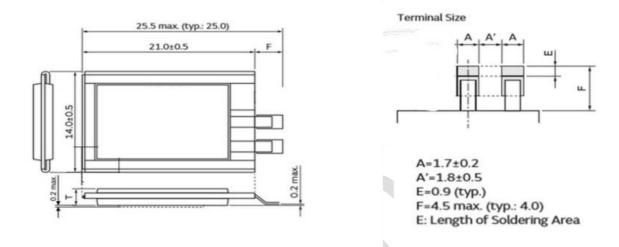
Applications:

- Unique ultra-thin prismatic design replaces bulky 3V cylindrical EDLC in space constrained application.
- Provide high pulse power in application designed to use 3V primary battery.
- Battery-less low power application, at 3V 23% more energy is available than the same capacitance at 2.7V.
- Asset tracking.
- Energy Harvesting for remote sensors.
- RTC and memory backup power.

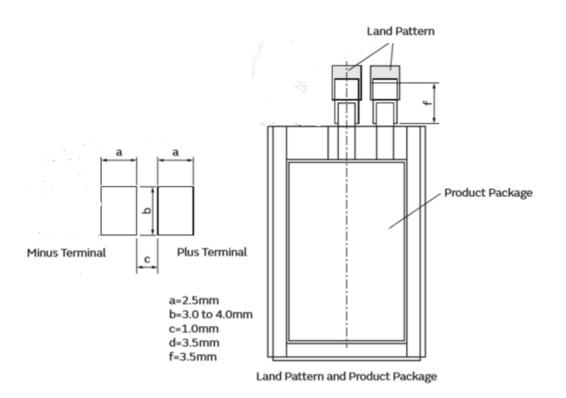
Electrical Specifications

Table 1: Absolute Maximum Ratings

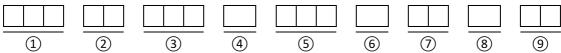
Parameter	Name	Conditions	Min	Typical	Max	Units
Terminal Voltage	Vn				3	V
Temperature	T _{max}		-20		+85	°C


Table 2: Electrical Characteristics

Parameter	Conditions	DMV754	Units
Capacitance		750	mF
Tolerance		± 20	%
ESR	AC, 1kHz	≤ 150	mΩ
Peak current	$\frac{V}{ESR \times 2}$	10	А
	3.0V, 23°C 120hrs	≤ 3	μA
Leakage Current I _L	2.7V, 23°C 120hrs	≤ 1.5	μΑ
	2.3V, 23°C 120hrs	≤ 0.8	μA
Thickness		≤ 2.2	mm


Table 3: Mechanical specification

	Length (mm)	Width (mm)	Height (mm)
DMV3N3R0V754M2DTA0	21 ± 0.5mm	14 ± 0.5	2.2


Draft Mechanical drawing for DMV

Landing Pad Dimensions

Part Numbering

1 Series

Code	
DMV	High Voltage Type

2 External Dimensions (L x W x T)

Code	L (mm)	W (mm)	T (mm)
3N	21.0±0.5	14.0±0.5	2.2

③ Rated Voltage

Code	Rated Voltage
3R0	DC 3V

(4) ESR

Code	ESR @ 1kHz
V	150mΩ

5 Nominal Capacitance

First two are significant digits and the third expresses the number of zeroes which follow the two numbers

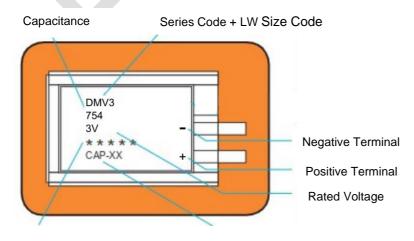
Code	Nominal Capacitance	
754	75x10⁴μF = 750mF	

6 Capacitance Tolerance

Code	Tolerance
M	±20%

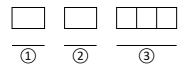
(7) External Terminal

Code	Terminal Specification
2D	2 Terminals (+/-)


8 Packaging

Code	Package Specification
T	Tray type, 50pcs/Tray

9 Inhouse Specification Code


Expressed by two-digit alphanumerics

Printing

Batch ID Manufacturer (CAP-XX or MURATA)

Batch ID

① Year

Code	Year
9	2019
Α	2020
В	2021
С	2022
D	2023
:	:
Υ	2044
Z	2045

2 Month

Code	Month
F	January
G	February
Н	March
J	April
К	May
L	June
M	July
N	August
P	September
Q	October
R	November
S	December

3 3-digit Unique ID

This 3 digit number is used to uniquely identify the batch within the month.