User Manual for APPEB1012
Solar Energy Harvesting Supercapacitor Evaluation Board using a PMIC with MPPT

Author: Henry Huang
User Manual for APPEB1012 Revision 1.3, April 2020

Solar Energy Harvesting Supercapacitor Evaluation Board using a PMIC with MPPT

Author: Henry Huang

Features

PCB supports all CAP-XX supercapacitors
- Supports all CAP-XX G and H series prismatic supercapacitor footprints
- Supports all CAP-XX DMF and DMT prismatic supercapacitor footprints
- Supports all CAP-XX cylindrical supercapacitor products
- Supports both single and dual cell devices with integrated active cell balancing

Ultra-low power boost regulator
e-peas AEM10941 with:
- Open-circuit voltage sensing for MPPT every 5s
- Configurable MPPT with 2-pin programming
- Selectable V_{pp}/V_{oc} ratio of 70%, 75%, 85%, 90%
- V_{in} operation from 50mV to 4.5V

Configurable cell voltage control
- Charge voltage regulation configurable via headers
- Eight inbuilt operation modes including user customisable mode for selectable supercapacitor voltage

Integrated dual output LDO regulators
- Low voltage LDO of 1.2 / 1.8 V with up to 20 mA load current
- High voltage LDO of 1.8 – 4.2 V up to 80 mA load current with 300 mV drop out
- Jumper link selectable

Configurable output control
- PMIC controlled output with user customisable voltage thresholds, or
- Direct connection between supercapacitor and the output
- Jumper link selectable
Low quiescent current
- Entire circuit draws on average of 5µA
- Great for low power energy harvesting application

Multiple test points
- Test points for input voltage and supercapacitor voltage measurement
- Includes 1Ω resistors for input and output current sensing

Easy to use
Purchase from CAP-XX, visit www.cap-xx.com or email sales@cap-xx.com

Description
The APPEB1012 is designed to aid the development of energy harvesting applications with a supercapacitor, particularly solar energy harvesting, using a PMIC to achieve a highly-efficient, regulated dual-output supply using a supercapacitor as the high power energy storage element.

A cold-start circuit allows the board to start operation with a discharged supercapacitor with an input voltage as low as 380 mV and input power of just 3 µW. The board incorporates a maximum power point tracking (MPPT) switch mode power management IC (PMIC), AEM10941 from e-pes. The IC senses the open-circuit voltage of the solar cell array or other energy harvester every 5 seconds to set the peak power point. For a simpler lower cost alternative that utilises direct charging from an energy harvester into a supercapacitor please refer to Applications Evaluation Board, APPEB1011 on our website, www.cap-xx.com.

The AEM10941 has a boost regulator output that charges the supercapacitor. The dual-outputs of the PMIC are driven by LDO regulators that can be enabled or disabled dynamically by external control. The low-voltage LDO outputs either 1.2V or 1.8V and the high-voltage output is configurable between 1.8V and 4.2V. There are configuration headers to determine pre-set charge for the supercapacitor or external resistors that can be used to set these voltages to other values.

The output of the board can be either directly connected to a load or controlled by the PMIC. The PMIC enables the output when the supercapacitor is greater than an upper threshold voltage and disables the output when the supercapacitor discharges below a lower threshold voltage. The threshold voltages are defined by the system configuration headers or configuration resistors if the Custom mode is chosen.

The APPEB1012 also includes an inbuilt active balance control which is a feature of the AEM10941 so dual cell supercapacitors can be used as well as single cell supercapacitors.

Circuit description
The circuit in figure 1 is separated into two sections. The left half of the schematic contains the input and the PMIC. The right half is the output control circuit and the output. Where CON1 is the energy harvester input terminal and CON2 is the output.

The left half of the circuit consists of the e-pes AEM10941 PMIC. Jumper headers JP4 – JP10 configure the AEM10941, as explained in the section on System Configuration. Resistors R2, R3, R5 and R6 are optional external resistor pads used for a customising the maximum supercapacitor voltage. The voltage of the dual LDO outputs can also be found in table 3 and the high voltage LDO can be externally customised by R8 and R9. The landing pad design for resistors R2, R3, R5, R6, R8 and R9 can accept either SMD 0603 or 5mm pitch through hole packages.
JP12 is the header that either connects the in-built active balance circuit of the PMIC to ground if a single cell supercapacitor is used or to the midpoint of a dual cell supercapacitor. If a dual cell supercapacitor is installed, then the active balance circuit must be connected to the midpoint to ensure the voltage on the top and bottom cells are equal. Please refer to AN1002: Cell Balancing for information in the importance of balancing dual cell supercapacitors.

C8, C9 are landing pads for CAP-XX xY (GY and HY) cylindrical cells, C3 is the landing pads for DMF and DMT products and C10 contains the landing pads for CAP-XX G and H prismatic parts. R7 is a 1Ω resistor designed to allow the input current to be measured, while R14 is a 1Ω resistor for measuring the output current. If the voltage drop caused by 1Ω resistors is too large, they can be replaced with a lower value resistor or shorted via a link across the jumpers labelled I_solar and I_load. Note these links could be wire loops to enable the use of a current probe to measure the current.

JP3, labelled OUTPUT selects whether the output is directly connected to the supercapacitor (DIR) or controlled by the PMIC (CTRL). When the direct output is chosen on JP3 output control PFETs M3 & M5 are bypassed and M3, M4, and M5 are OFF only drawing ~200nA leakage current. When the output control is selected, the output is gated by back-back PFETs M3 and M5. The upper and lower thresholds of the output enable are set in the system configuration such that the PMIC enables the output when the voltage reaches Vchrdy and disables it approximately 400ms after the voltage drops below Vovdis. When the supercapacitor voltage is ≥ Vchrdy, the PMIC turns M4 on which in turn switches M3 & M5 ON, connecting the output to the supercapacitor. When the supercapacitor discharges below Vovdis, the PMIC waits 400ms before turning M4 OFF which turns OFF M3 & M5, disabling the output and allowing the supercapacitor to charge.

The dual LDO outputs, HVOUT and LVOUT, are also enabled by the charge management thresholds Vchrdy and Vovdis. This is internally controlled by the PMIC.

Figure 1. Schematic of APPEB1012
Installation of supercapacitor

CAP-XX DMF and DMT prismatic

CAP-XX’s DMF and DMT prismatic products share the same pin configuration and only available as dual cell devices. This makes mounting the DMF and DMT products very simple. Please ensure that the active-balance is active (linked across BAL) for dual cell operation refer to figure 2 below.

In any case where the user wishes to use DMF and DMT products as single cell devices at ½ their rated voltage, a short piece of wire can be soldered across the positive and balance terminal of the device to short out the top cell. Please ensure that the active-balance configuration jumper header JP12 is disabled (linked across GND). As shown in figure 3 below.

Figure 2: Illustration to correctly installing DMF and DMT prismatic device

Figure 3: Illustration to short circuit the top cell of DMF and DMT to be used as single cell
CAP-XX G and H prismatic supercapacitor – Single cell

CAP-XX has 4 main package types for the prismatic line. From the smallest to the biggest they are: Z, A, W and S. The A and Z packages are pin compatible. Pins are reversed between W/S packages and the A/Z packages. Hence when installing a W or S package single cell, the supercapacitor must be rotated 180° as shown in figure 4 below. Please ensure that the active-balance configuration jumper header JP12 is disabled (linked across GND) as shown in red in the figure below. This jumper is labelled: **BAL GND**.

![Figure 4: illustration to install CAP-XX G and H prismatic single cell supercapacitors](image)

CAP-XX G and H prismatic supercapacitor – Dual cell

CAP-XX prismatic dual cells are all installed in the same orientation. Please ensure that the active-balance configuration header is active (linked across BAL) as shown in red in figure 5 below.

![Figure 5: illustration to install CAP-XX G and H prismatic dual cell supercapacitors](image)
CAP-XX cylindrical cells
CAP-XX’s cylindrical products, the GY & HY series (xY), covers capacitance from 1F to 100F in radial lead form.

The APPEB1012 board only fits single cell radial lead xY products however two single cylindrical cells can be placed on the board in series to act as a dual cell. This gives access to the midpoint to the active balance circuit. Our xY line currently has 6 different diameters but with only three different pin pitches. The PCB through hole design for our cylindrical cells has one positive through hole and three through holes for the negative pin. When installing an xY series cell, first place the positive pin into the hole marked +, then slide the negative pin of the cell into one of the negative through-holes with the correct pitch. Figure 6 below illustrates this.

![Correctly installing a CAP-XX cylindrical cell supercapacitor](image)

When using only one single CAP-XX cylindrical supercapacitor, the empty cylindrical slot must be short-circuited with a wire link from the positive to the negative terminal. Also, the active-balance configuration header must be connected to GND as shown in red on the left of figure 7.

When 2 CAP-XX cylindrical supercapacitors are connected as dual cells, both supercapacitors should be fitted with their correct positive and negative terminals and the active-balance configuration header must be connected to the cell midpoint as shown in red on the right image of figure 7.

![Illustration to correctly install CAP-XX cylindrical cell device as single cell (left) or dual cell (right)](image)
System Configuration

There are seven configuration headers on the APPEB1012 used to enable the high-voltage and low-voltage LDOs, set the MPPT level and to set the charge management thresholds. Selection of high or low for the configuration pins are shown in figure 8. Refer to the datasheet of the AEM10941 if more detail is required.

![Figure 8: Configuration headers set all to 1 (left) and all to 0 (right) and location of configuration resistors](image)

LDO output configurations

Two LDOs are available to supply loads at different operating voltages and can be enabled via the jumpers on the evaluation board – ENLV and ENHV:

<table>
<thead>
<tr>
<th>ENLV</th>
<th>ENHV</th>
<th>LV output</th>
<th>HV output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Table 1: Enabling LDO configurations

The LDO outputs, one high and one low voltage, are accessible from the LVOUT and HVOUT headers with voltages Vlv and Vhv respectively, to supply circuits that require a stable voltage. If enabled, LVOUT and HVOUT are enabled when the supercapacitor voltage \(\geq V_{chrdy} \) and are disabled approximately 400ms after the supercapacitor voltage drops below \(V_{ovdis} \).

MPPT Configuration

<table>
<thead>
<tr>
<th>MPP [1:0]</th>
<th>(V_{mpp} / V_{oc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>70%</td>
</tr>
<tr>
<td>0 1</td>
<td>75%</td>
</tr>
<tr>
<td>1 0</td>
<td>85%</td>
</tr>
<tr>
<td>1 1</td>
<td>90%</td>
</tr>
</tbody>
</table>

Table 2: Usage of MPP[1:0]
Two configuration headers, MPP[1:0] allow selection the MPP tracking ratio based on the characteristic of the input energy harvesting source. The AEM10941 measures the open circuit voltage of the energy harvester and sets the peak power point voltage to be the % of Voc set in Table 2.

Charge Management Configuration

Through 3 configuration pins, CFG[2:0], the user can set a particular operating mode from a range that covers most application requirements without any additional external components.

The three threshold levels are defined as:

- Vovch : OverCharge threshold voltage
- Vchrdy : ChargeReady threshold voltage
- Vovdis : OverDischarge threshold voltage

<table>
<thead>
<tr>
<th>Configuration pins</th>
<th>Charge management threshold voltage</th>
<th>LDO output voltage</th>
<th>Typical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG [2:0]</td>
<td>Vovch</td>
<td>Vchrdy</td>
<td>Vovdis</td>
</tr>
<tr>
<td>1 1 1</td>
<td>4.12</td>
<td>3.67</td>
<td>3.60</td>
</tr>
<tr>
<td>1 1 0</td>
<td>4.12</td>
<td>4.05</td>
<td>3.60</td>
</tr>
<tr>
<td>1 0 1</td>
<td>4.12</td>
<td>3.67</td>
<td>3.00</td>
</tr>
<tr>
<td>1 0 0</td>
<td>2.70</td>
<td>2.30</td>
<td>2.20</td>
</tr>
<tr>
<td>0 1 1</td>
<td>4.50</td>
<td>3.67</td>
<td>2.80</td>
</tr>
<tr>
<td>0 1 0</td>
<td>4.50</td>
<td>3.92</td>
<td>3.60</td>
</tr>
<tr>
<td>0 0 1</td>
<td>3.63</td>
<td>3.10</td>
<td>2.80</td>
</tr>
<tr>
<td>0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Usage of CFG[1:0]

Custom mode

When CFG [2:0] is set as low, users can use external resistors to customise their required threshold voltage ranges, as shown in figure 9.

![Resistors that set custom mode](image)

All six configuration resistors shown in Figures 8 and 9, must be installed as follows:

Vovch, Vchrdy and, Vovdis are defined by R2, R3, R5 and R6. If we define the total resistor RT as (R2 + R3 + R5 + R6)

R2, R3, R5 and R6 are calculated as:

- $1 \text{ M}\Omega < RT < 100 \text{ M}\Omega$
- $R2 = RT \left(1 - \frac{1V}{V_{ovdis}}\right)$
- $R3 = RT \left(\frac{1V}{V_{ovch}}\right)$
- $R5 = RT \left(\frac{1V}{V_{ovch}} - \frac{1V}{V_{chrdy}}\right)$
- $R6 = RT \left(\frac{1V}{V_{chrdy}} - \frac{1V}{V_{ovch}}\right)$
Vlv cannot be customised. Vhv, can be customised by R8 and R9. If the total resistor of (R8 + R9) is RV, R8 and R9 are calculated as:

- \(1 \, \text{M}\Omega < RV < 40 \, \text{M}\Omega \)
- \(R8 = RT \left(1 - \frac{1}{V_{hv}} \right) \)
- \(R9 = RT \left(\frac{1}{V_{hv}} \right) \)

The resistors should have high values to make the additional power consumption negligible. Moreover, the following constraints must be adhered to ensure the functionality of the chip:

- \(V_{chrdy} + 0.05V < V_{ovch} < 4.5V \)
- \(V_{ovdis} + 0.05V < V_{chrdy} < V_{ovch} - 0.05V \)
- \(2.2V < V_{ovdis} \)
- \(V_{hv} < V_{ovdis} - 0.3V \)

For example, table 4 has two sets of resistor values to customise the charge management threshold voltages to be different from the PMIC inbuilt options.

<table>
<thead>
<tr>
<th>Configuration Resistors</th>
<th>Charge management threshold voltage</th>
<th>LDO output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 R3 R5 R6 R8 R9 Vovch Vchrdy Vovdis Vhv Vlv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10M 6.8M 1.2M 330k 5.6M 6.2M 2.70 2.57 2.20 1.9 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8M 2.2M 680k 150k 7.2M 3.9M 4.47 4.18 3.24 2.85 1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Example resistor values for typical use

Output mode selection

APPEB1012 has two output modes, either directly connect the output to the supercapacitor or have the PMIC handle the output based on charge management voltage thresholds. This is accomplished by placing the jumper link on the desired section of the 3-pin header labelled OUTPUT, illustrated in figure 10 below.
PMIC controlled output voltage

When the PMIC controlled output mode (CTRL) is selected, the voltage range of which output enables is determined by the charge management configuration. The upper threshold is Vchrdy which enables the output voltage to the load whilst the output is disabled typically 600ms after the supercapacitor voltage drops below Vovdis.

![Figure 11: Example output voltage operation](image)

In figure 11, HA102 is connected to the APPEB1012 and the supercapacitor voltage and output voltage was observed. The system configuration was connected as CFG[2:0] = [0 0 0] such that the PMIC entered custom mode as described in table 3. Custom external resistors were chosen to create the charge management equal to the first row of table 4.

In this example, Vovch = 2.7; Vchrdy = 2.57V; Vovdis = 2.2V and a constant current of 100mA was drawn as the load. Furthermore, a power supply limited at 50mA was used as a representation of a solar cell.

Since the lower threshold of the output voltage is 600ms after the Vscap falls below Vovdis we can calculate the lower threshold from

\[i = \frac{C}{\Delta t} \quad \Delta v \]

Where \(i \) is the load current, \(C \) is the capacitance of the supercapacitor, \(\Delta v \) is the voltage drop and \(\Delta t \) is the time taken. Since a HA102 is 0.24F, using the above equation, we can calculate the lower threshold voltage to be

\[V_{lower} = V_{ovdis} - \frac{i}{C} \Delta t \]

\[= 2.2V - \left(\frac{0.1A}{0.24F} \times 0.6s \right) \]

\[= 1.95V \]

Hence, the lower and upper output voltage thresholds are at 1.95V and 2.57V as seen in figure 9.
Status Pins

Users are also given access to the STATUS[2:0] logic output levels on the status pins if required.

The status pin STATUS[0] turns high when the supercapacitor voltage reaches Vchrdy to signal that the LDOs are operational and can be enabled.

If the supercapacitor voltage gets discharged below Vovdis, the LDOs are gated OFF and the boost converter on the AEM10941 is no longer supplied by the storage element to protect it from further discharge. When Vscap drops below Vovdis STATUS[1] changes from low to high, to warn that the system will soon shut down, and ~600ms later, when shutdown occurs, STATUS[1] and STATUS[0] both go from high to low. This is illustrated in figure 12.

![Figure 12: Example STATUS pin operation](image)

The status of the MPP controller is reported with one dedicated status pin (STATUS[2]). The status pin is asserted when the input is set open circuit to measure V_{OC} of the energy harvester.

Further Information

CAP-XX will be pleased to provide further information on the applications described here, and on the use of supercapacitors in any application. Please use the contact details provided on the CAP-XX web site (www.cap-xx.com).

This user manual is available on the CAP-XX web site. On the web site you may also find product bulletins, datasheets, SPICE models, application white paper, application briefs and design-aid calculator (http://cap-xx.com).