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Source max power < load peak power

1. The Problem
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Source & Load power

• Wireless sensors are becoming ubiquitous:

 Security

 Fire

 Condition monitoring

 Location tracking

 etc.

• Many of these applications require small, unobtrusive sensors, 

powered by small high energy batteries with long life but low rate 

capability: e.g. LiSOCl2

• But the load requires burst power for data collection and 

transmission and that exceeds the power the battery can deliver

• Even though the average load power < average power the 

source can deliver, due to the intermittent nature of the load

3



© CAP-XX CONFIDENTIAL 2009

Charge a supercapacitor at average power

Provide peak power to the load from the 

supercapacitor

2. The Solution
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3. Organic vs Aqueous Supercapacitors
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What is a Supercapacitor?
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Physical charge storage,

Not electrochemical Ions in Solvent

Basic Electrical Model

A supercapacitor is a high performance “green” electronic component

 No dielectric, max voltage 

limited by electrolyte 

breakdown voltage

 ESR  1/Electrode area

 C Carbon volume
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Organic or Aqueous?

• Two possible electrolyte types:

 Organic: Max voltage up to 2.7V/cell & higher energy density, but 

difficult to make

 Aqueous: Max voltage ~1V/cell but simple to make

• Need to cascade cells in series

to achieve working voltage

• An aqueous supercap will need

3 cells in series to attain the 

same working voltage as a 

single organic supercap cell

• For an equivalent carbon volume, the aqueous supercap will 

have 1/9 the C of an organic supercap

7
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Figure 1. Comparison of energy density for aqueous 

& organic electrolyte supercapacitors rated at 2.7V
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Use a supercap to buffer power

• Small form factor, single cell supercapacitors are 

available with high C (up to 2.4F) & low ESR (down to 

~14m)

• They can be charged at low currents from a low power 

source

• Have low enough ESR to deliver the load power 

required, even for GSM transmission (~8W),

• And high enough C to deliver that power for the 

duration needed: sufficient energy storage

• A supercapacitor looks like a low power load to the 

source & a low impedance source to the load

8
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4. Solution using a single cell organic 

supercapacitor
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Solution

• Max supercapacitor voltage = 2.7V, but max source voltage is 

typically 3V, e.g. CR2032

• Need over-voltage protection

• Load can operate at <2.7V (down to 0.7V for a well designed 

boost converter)

• Circuit below can be designed with quiescent current of <3A

• R is chosen to optimise supercapacitor charge time while limiting 

the high current stress on the battery to an acceptable level. 

Energy loss is independent of R

10

Figure 2. Button battery supercap 

trickle charger 
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5. Losses independent of current limit R

11
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Losses independent of R

• Analysis in the paper shows losses are independent of R:

 For higher values of R, current is less, but time to charge is longer

 For lower values of R, higher current and shorter charge time

 So the energy lost

 Depends on the supercapacitor C, and the voltages the 

supercapacitor is charged from and to.
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6. Circuit implementation of the button battery 

supercapacitor charger
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Charger Circuit

14

Figure 4. Button battery supercap 

charger circuit 

Fig 4: Button battery 

supercap charger circuit

 Hysteresis: Q1 OFF when Vscap > 2.696V, Q1 ON when Vscap < 2.688V

 Quiescent current when supercapacitor fully charged ~3A – 5A

 R determined so Trecharge < 5RC, supercap charged to 99% of Vbatt. In the 

circuit of Fig 4, this would be 5 x 2400 = 3hrs 20 mins
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7. Design considerations
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Min voltage the battery must supply

16

 
Available mAH vs Minimum Load Operating Voltage

for typical CR2032 Button Battery
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Fig 6: CR2032 Capacity vs Minimum Load 

Voltage 

 

Fig 5. CR2032 discharge performance 

 

Discharge curves from the manufacturer 

are typically time vs constant resistive load 

….

… which can be used to 

calculate mAh vs min battery 

voltage at which the system 

operates. The curve above 

shows if the system is designed 

to operate at  2.6V, then max 

battery energy will be extracted. 

Cct in 6. will run down to 1.8V
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Keep Supercapacitor on charge, or

Charge when needed?

Key design decision to minimise energy loss:

 Always keep the supercapacitor on charge and lose the energy 

from circuit quiescent current and supercapacitor leakage current

Or

 Let the supercapacitor discharge after use

Factors affecting the decision:

 Time between burst load intervals

 Supercapacitor self discharge characteristic

 C value

17



© CAP-XX CONFIDENTIAL 2009

Keep Supercapacitor on charge, or

Charge when needed?

18
 

Figure 7: Battery Life depending on whether supercapacitor is 

always on charge or only charged prior to each load event. 
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Supercapacitors do not behave like 

classical capacitors

19
 

Supercapacitor Charging
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Figure 10: Supercapacitor charging at 

low levels of constant current. 

They need a minimum charge current
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Supercapacitors do not behave like 

classical capacitors
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Figure 11. Supercapacitor charging does not follow the classical model 
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Self discharge characteristic 

empirically determined

21
 

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800

S
u

p
e

rc
a

p
a

c
it

o
r 

V
o

lt
a

g
e

 (
V

)

Time (hrs)

Long Term HS108 Supercapacitor Self Discharge

Sample1

Sample2

Sample3

Sample4

Sample5

Sample6

Sample7

Sample8

Sample9

Sample10

Sample11

Sample12

Estimate

Est 2

 )(025317.0 hrstVinitV 

Estimate (based on diffusion):

Est 2, based on RC time constant and estimate for R as 
resistor in parallel with supercapacitor to model self discharge 

 

FCMR

eVinitV RCst

8.1,5.5

/)(sec



 

Figure 12: Supercapacitor self discharge characteristic 
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8. Case Study

22
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Case Study
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Figure 9: System Architecture: Single 3 Volt Lithium Cell Driving a 1 Watt Class 8 GPRS Load. 

 

  GSM transmitter, 1W @ 1/8 duty cycle, RF PA is 40% efficient

 3 sec burst. 100mA continuous current while module is on.

 Data collection & transmission 1/week

 Boost converter Vo = 3.6V, min boost converter Vin = 0.9V

 Boost converter efficiency = 80%
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Sizing the supercapacitor

• Two constraints: Min C & Max ESR, they are interdependent

• Need to determine peak load current and total load energy to size C & 

ESR

• C  2 x ELOAD/[VBATT MIN
2 – (VLOAD MIN + IPEAK x ESR)2] 

• Load energy delivered by the supercapacitor

= [(1W/40%x1/8  + 3.6V x 0.1A)/80%] x 3 secs

= 2.52J

• Peak boost converter i/p power

= [1W/40% + 3.6V x 0.1A]/80%

= 3.58W

• Peak current = 3.58W/min boost Vin = 3.58W/0.9V = 4A

 VLOAD MIN + IPEAK x ESR) = 0.9V + 4A x 0.1A = 1.3V

• Assume ESR = 100m

 C  2 x 2.52J/(2.62 – 1.32) = 0.995F

 Select HS108. 1.8F20%, 28m20%

24
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9. Conclusions & Next Steps

25
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Conclusions & Next Steps

1. A supercapacitor can be used to buffer a high peak power load so a low 

power high energy source can be used (eg, a 3V button battery)

2. A single cell organic electrolyte supercapacitor is best suited for such 

applications due to its:
− Superior energy density

− Low ESR

− Low leakage current and no need for cell balancing

3. We have presented design considerations to optimise such a system, 

most notably whether to leave the supercapacitor on charge or to charge 

as needed

4. We have shown that supercapacitors do not behave as classical 

supercapacitors

5. We have presented a case study

6. Further work is required to characterise the charge & self discharge 

behaviour. These are crucial to choosing the best charging strategy. 

Currently, the best course of action is to empirically characterise the 

charge/discharge behaviour of the supercapacitors of interest

26
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